Liouville Principles and a Large-Scale Regularity Theory for Random Elliptic Operators on the Half-Space

نویسندگان

  • Julian Fischer
  • Claudia Raithel
چکیده

We consider the large-scale regularity of solutions to second-order linear elliptic equations with random coefficient fields. In contrast to previous works on regularity theory for random elliptic operators, our interest is in the regularity at the boundary: We consider problems posed on the halfspace with homogeneous Dirichlet boundary conditions and derive an associated C1,α-type large-scale regularity theory in the form of a corresponding decay estimate for the homogenization-adapted tilt-excess. This regularity theory entails an associated Liouville-type theorem. The results are based on the existence of homogenization correctors adapted to the half-space setting, which we construct – by an entirely deterministic argument – as a modification of the homogenization corrector on the whole space. This adaption procedure is carried out inductively on larger scales, crucially relying on the regularity theory already established on smaller scales.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Higher-order Large-scale Regularity Theory for Random Elliptic Operators

We develop a large-scale regularity theory of higher order for divergence-form elliptic equations with heterogeneous coefficient fields a in the context of stochastic homogenization. The large-scale regularity of a-harmonic functions is encoded by Liouville principles: The space of a-harmonic functions that grow at most like a polynomial of degree k has the same dimension as in the constant-coe...

متن کامل

Elliptic and Parabolic Equations

Elliptic equations: 1. Harmonic functions 2. Perron’s method 3. Potential theory 4. Existence results; the method of suband supersolutions 5. Classical maximum principles for elliptic equations 6. More regularity, Schauder’s theory for general elliptic operators 7. The weak solution approach in one space dimension 8. Eigenfunctions for the Sturm-Liouville problem 9. Generalization to more dimen...

متن کامل

On Divergence-free Drifts

We investigate the validity and failure of Liouville theorems and Harnack inequalities for parabolic and elliptic operators with low regularity coefficients. We are particularly interested in operators of the form ∂t−∆+ b ·∇ resp. −∆+ b ·∇ with a divergence-free drift b. We prove the Liouville theorem and Harnack inequality when b ∈ L∞(BMO) resp. b ∈ BMO−1 and provide a counterexample demonstra...

متن کامل

Towards an L-theory for Vector-valued Elliptic Boundary Value Problems

Vector-valued elliptic and parabolic boundary value problems subject to general boundary conditions have been investigated recently in [DHP01] in the Lp-context for 1 < p < 1. One of the main goals of this paper was to deduce a maximal Lp-regularity result for the solution of the parabolic initial boundary value problem. A classical reference in the elliptic context are the celebrated papers of...

متن کامل

Inverse problem for Sturm-Liouville operators with a transmission and parameter dependent boundary conditions

In this manuscript, we consider the inverse problem for non self-adjoint Sturm--Liouville operator $-D^2+q$ with eigenparameter dependent boundary and discontinuity conditions inside a finite closed interval. We prove by defining a new Hilbert space and using spectral data of a kind, the potential function can be uniquely determined by a set of value of eigenfunctions at an interior point and p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Math. Analysis

دوره 49  شماره 

صفحات  -

تاریخ انتشار 2017